enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    where is the lattice energy (i.e., the molar internal energy change), is the lattice enthalpy, and the change of molar volume due to the formation of the lattice. Since the molar volume of the solid is much smaller than that of the gases, Δ V m < 0 {\displaystyle \Delta V_{m}<0} .

  3. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term. [2]

  4. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  5. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.

  6. Born–Haber cycle - Wikipedia

    en.wikipedia.org/wiki/Born–Haber_cycle

    Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...

  7. Madelung constant - Wikipedia

    en.wikipedia.org/wiki/Madelung_constant

    The proper calculation of electrostatic lattice constants has to consider the crystallographic point groups of ionic lattice sites; for instance, dipole moments may only arise on polar lattice sites, i. e. exhibiting a C 1, C 1h, C n or C nv site symmetry (n = 2, 3, 4 or 6). [11]

  8. Lattice constant - Wikipedia

    en.wikipedia.org/wiki/Lattice_constant

    Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.

  9. Vegard's law - Wikipedia

    en.wikipedia.org/wiki/Vegard's_law

    Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]