Search results
Results from the WOW.Com Content Network
Turbo codes, as described first in 1993, implemented a parallel concatenation of two convolutional codes, with an interleaver between the two codes and an iterative decoder that passes information forth and back between the codes. [6] This design has a better performance than any previously conceived concatenated codes.
For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: = = + +, where c k is defined as above. Asymptotic expansion
To obtain a code over the alphabet {0,1}, the mapping −1 ↦ 1, 1 ↦ 0, or, equivalently, x ↦ (1 − x)/2, is applied to the matrix elements. That the minimum distance of the code is n /2 follows from the defining property of Hadamard matrices, namely that their rows are mutually orthogonal.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
A block code (specifically a Hamming code) where redundant bits are added as a block to the end of the initial message A continuous convolutional code where redundant bits are added continuously into the structure of the code word. The two main categories of ECC codes are block codes and convolutional codes.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
Computers typically use binary arithmetic, but to make the example easier to read, it will be given in decimal. Suppose we are using six-digit decimal floating-point arithmetic, sum has attained the value 10000.0, and the next two values of input[i] are 3.14159 and 2.71828. The exact result is 10005.85987, which rounds to 10005.9.
A code is defined to be equidistant if and only if there exists some constant d such that the distance between any two of the code's distinct codewords is equal to d. [4] In 1984 Arrigo Bonisoli determined the structure of linear one-weight codes over finite fields and proved that every equidistant linear code is a sequence of dual Hamming ...