Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
As a consequence of the Pythagorean theorem, the hypotenuse is the longest side of any right triangle; that is, the hypotenuse is longer than either of the triangle's legs. For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse.
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.
This formula generalizes Heron's formula for triangles and Brahmagupta's formula for cyclic quadrilaterals. [37] Either diagonal of a rhombus divides it into two congruent isosceles triangles. Similarly, one of the two diagonals of a kite divides it into two isosceles triangles, which are not congruent except when the kite is a rhombus.
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.