Search results
Results from the WOW.Com Content Network
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of ...
For example, Bambuti mythology and other creation stories from the pygmies of Congo state that the supreme God of the pygmies, Khonvoum, created three different races of humans separately out of three kinds of clay: one black, one white, and one red. [4] In some cultures, polygenism in the creation narrative served an etiological function ...
At present the best-understood examples of polygenic adaptation are in humans, and particularly for height, a trait that can be interpreted using data from genome-wide association studies. In a 2012 paper, Joel Hirschhorn and colleagues showed that there was a consistent tendency for the "tall" alleles at genome-wide significant loci to be at ...
Examples of this type of disorder are albinism, medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle cell disease, Tay–Sachs disease, Niemann–Pick disease, spinal muscular atrophy, and Roberts syndrome. Certain other phenotypes, such as wet versus dry earwax, are also determined in an autosomal recessive fashion.
Traits controlled by two or more genes are said to be polygenic traits. Polygenic means "many genes" are necessary for the organism to develop the trait. For example, at least three genes are involved in making the reddish-brown pigment in the eyes of fruit flies. Polygenic traits often show a wide range of phenotypes.
The paradigm of polygenic inheritance as being used to define multifactorial disease has encountered much disagreement. Turnpenny (2004) discusses how simple polygenic inheritance cannot explain some diseases such as the onset of Type I diabetes mellitus, and that in cases such as these, not all genes are thought to make an equal contribution. [12]
This model illustrates polygenic additive effects on phenotype Genetic effects are broadly divided into two categories: additive and non-additive. Additive genetic effects occur where expression of more than one gene contributes to phenotype (or where alleles of a heterozygous gene both contribute), and the phenotypic expression of these gene(s ...
The infinitesimal model, also known as the polygenic model, is a widely used statistical model in quantitative genetics and in genome-wide association studies.Originally developed in 1918 by Ronald Fisher, it is based on the idea that variation in a quantitative trait is influenced by an infinitely large number of genes, each of which makes an infinitely small (infinitesimal) contribution to ...