Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ((+)) for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.
It follows from the functional equation of the Riemann zeta function that the Z function is real for real values of t. It is an even function, and real analytic for real values. It follows from the fact that the Riemann–Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of ...
Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.
A Gram point is a point on the critical line 1/2 + it where the zeta function is real and non-zero. Using the expression for the zeta function on the critical line, ζ(1/2 + it) = Z(t)e − iθ(t), where Hardy's function, Z, is real for real t, and θ is the Riemann–Siegel theta function, we see that zeta is real when sin(θ(t)) = 0.
The analytic continuation of this zeta function ζ to all complex s ≠ 1; The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage) The discrete function J(x) defined for x ≥ 0, which is defined by J(0) = 0 and J(x) jumps by 1/n at each prime power p n. (Riemann calls this ...
Riemann function may refer to one of the several functions named after the mathematician Bernhard Riemann, including: Riemann zeta function; Thomae's function, also called the Riemann function; Riemann theta function, Riemann's R, an approximation of the prime-counting function π(x), see Prime-counting function#Exact form. Almost nowhere ...
Zeta functions and L-functions express important relations between the geometry of Riemann surfaces, number theory and dynamical systems.Zeta functions, and their generalizations such as the Selberg class S, are conjectured to have various important properties, including generalizations of the Riemann hypothesis and various relationships with automorphic forms as well as to the representations ...
In 1859 Bernhard Riemann used complex analysis and a special meromorphic function now known as the Riemann zeta function to derive an analytic expression for the number of primes less than or equal to a real number x. Remarkably, the main term in Riemann's formula was exactly the above integral, lending substantial weight to Gauss's conjecture.