enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  4. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    The above definitions are particularly relevant in situations where truncation errors are not important. In other contexts, for instance when solving differential equations, a different definition of numerical stability is used. In numerical ordinary differential equations, various concepts of numerical stability exist, for instance A-stability.

  5. Art gallery problem - Wikipedia

    en.wikipedia.org/wiki/Art_gallery_problem

    In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is -complete, as is the version where the guards are restricted to the edges of the polygon. [10]

  6. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.

  7. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The consequence of this difference is that at every step, a system of algebraic equations has to be solved. This increases the computational cost considerably. If a method with s stages is used to solve a differential equation with m components, then the system of algebraic equations has ms components.

  8. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors , direct methods would deliver an exact solution (for example, solving a linear system of equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } by Gaussian elimination ).

  9. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.