Search results
Results from the WOW.Com Content Network
In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is -complete, as is the version where the guards are restricted to the edges of the polygon. [10]
The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]
Overlapping sub-problems means that the space of sub-problems must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over, rather than generating new sub-problems. For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base ...
Divide and conquer divides the problem into multiple subproblems and so the conquer stage is more complex than decrease and conquer algorithms. [citation needed] An example of a decrease and conquer algorithm is the binary search algorithm. Search and enumeration Many problems (such as playing chess) can be modelled as problems on graphs.
Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. [1] In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. [2]
In the general case, constraint problems can be much harder, and may not be expressible in some of these simpler systems. "Real life" examples include automated planning, [6] [7] lexical disambiguation, [8] [9] musicology, [10] product configuration [11] and resource allocation. [12] The existence of a solution to a CSP can be viewed as a ...
An example spangram with corresponding theme words: PEAR, FRUIT, BANANA, APPLE, etc. Need a hint? Find non-theme words to get hints. For every 3 non-theme words you find, you earn a hint.
Differential equations play an important role in modeling virtually every physical, technical, or biological process, from celestial motion, to bridge design, to interactions between neurons. Differential equations such as those used to solve real-life problems may not necessarily be directly solvable, i.e. do not have closed form solutions