enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simultaneous localization and mapping - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_localization...

    2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

  3. List of SLAM methods - Wikipedia

    en.wikipedia.org/wiki/List_of_SLAM_Methods

    This is a list of simultaneous localization and mapping (SLAM) methods. The KITTI Vision Benchmark Suite website has a more comprehensive list of Visual SLAM methods.

  4. Invariant extended Kalman filter - Wikipedia

    en.wikipedia.org/wiki/Invariant_extended_Kalman...

    The problem of simultaneous localization and mapping also fits the framework of invariant extended Kalman filtering after embedding of the state (consisting of attitude matrix , position vector and a sequence of static feature points , …,) into the Lie group + (or + for planar systems) [8] defined by the group operation:

  5. Robotic mapping - Wikipedia

    en.wikipedia.org/wiki/Robotic_mapping

    Map learning cannot be separated from the localization process, and a difficulty arises when errors in localization are incorporated into the map. This problem is commonly referred to as Simultaneous localization and mapping (SLAM).

  6. Point-set registration - Wikipedia

    en.wikipedia.org/wiki/Point-set_registration

    Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.

  7. Inverse depth parametrization - Wikipedia

    en.wikipedia.org/wiki/Inverse_depth_parametrization

    Given 3D point = (,,) with world coordinates in a reference frame (,,), observed from different views, the inverse depth parametrization of is given by: = (,,,,,) where the first five components encode the camera pose in the first observation of the point, being = (,,) the optical centre, the azimuth, the elevation angle, and = ‖ ‖ the inverse depth of at the first observation.

  8. Normal distributions transform - Wikipedia

    en.wikipedia.org/wiki/Normal_distributions_transform

    Originally introduced for 2D point cloud map matching in simultaneous localization and mapping (SLAM) and relative position tracking, [1] the algorithm was extended to 3D point clouds [2] and has wide applications in computer vision and robotics. NDT is very fast and accurate, making it suitable for application to large scale data, but it is ...

  9. Robot Operating System - Wikipedia

    en.wikipedia.org/wiki/Robot_Operating_System

    slam toolbox [80] provides full 2D SLAM and localization system. gmapping [81] provides a wrapper for OpenSlam's Gmapping algorithm for simultaneous localization and mapping. cartographer [82] provides real time 2D and 3D SLAM algorithms developed at Google. amcl [83] provides an implementation of adaptive Monte-Carlo localization.