enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Axial chirality - Wikipedia

    en.wikipedia.org/wiki/Axial_chirality

    The chirality of a molecule that has a helical, propeller, or screw-shaped geometry is called helicity [5] or helical chirality. [6] [7] The screw axis or the D n, or C n principle symmetry axis is considered to be the axis of chirality. Some sources consider helical chirality to be a type of axial chirality, [7] and some do not.

  3. Helicity (particle physics) - Wikipedia

    en.wikipedia.org/wiki/Helicity_(particle_physics)

    The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...

  4. MHV amplitudes - Wikipedia

    en.wikipedia.org/wiki/MHV_Amplitudes

    These amplitudes are called MHV amplitudes, because at tree level, they violate helicity conservation to the maximum extent possible. The tree amplitudes in which all gauge bosons have the same helicity or all but one have the same helicity vanish. MHV amplitudes may be calculated very efficiently by means of the Parke–Taylor formula.

  5. Chirality (physics) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(physics)

    To see an in depth discussion of the two with examples, which also shows how chirality and helicity approach the same thing as speed approaches that of light, click the link entitled "Chirality and Helicity in Depth" on the same page. History of science: parity violation; Helicity, Chirality, Mass, and the Higgs (Quantum Diaries blog)

  6. Helicity basis - Wikipedia

    en.wikipedia.org/wiki/Helicity_basis

    The two-component helicity eigenstates satisfy ^ (^) = (^) where are the Pauli matrices, ^ is the direction of the fermion momentum, = depending on whether spin is pointing in the same direction as ^ or opposite.

  7. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    Conservation laws are considered to be fundamental laws of nature, with broad application in physics, as well as in other fields such as chemistry, biology, geology, and engineering. Most conservation laws are exact, or absolute, in the sense that they apply to all possible processes.

  8. Chirality (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(chemistry)

    An example of a molecule that does not have a mirror plane or an inversion and yet would be considered achiral is 1,1-difluoro-2,2-dichlorocyclohexane (or 1,1-difluoro-3,3-dichlorocyclohexane). This may exist in many conformers (conformational isomers), but none of them has a mirror plane.

  9. Magnetic helicity - Wikipedia

    en.wikipedia.org/wiki/Magnetic_helicity

    Magnetic helicity is a gauge-dependent quantity, because can be redefined by adding a gradient to it (gauge choosing).However, for perfectly conducting boundaries or periodic systems without a net magnetic flux, the magnetic helicity contained in the whole domain is gauge invariant, [15] that is, independent of the gauge choice.