Search results
Results from the WOW.Com Content Network
Usually, the 32-bit and 64-bit IEEE 754 binary floating-point formats are used for float and double respectively. The C99 standard includes new real floating-point types float_t and double_t, defined in <math.h>. They correspond to the types used for the intermediate results of floating-point expressions when FLT_EVAL_METHOD is 0, 1, or 2.
The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range from −1022 to +1023 because exponents of −1023 (all 0s) and +1024 (all 1s) are reserved ...
The number 2,147,483,647 (or hexadecimal 7FFFFFFF 16) is the maximum positive value for a 32-bit signed binary integer in computing. It is therefore the maximum value for variables declared as integers (e.g., as int ) in many programming languages.
Programmers may also incorrectly assume that a pointer can be converted to an integer without loss of information, which may work on (some) 32-bit computers, but fail on 64-bit computers with 64-bit pointers and 32-bit integers. This issue is resolved by C99 in stdint.h in the form of intptr_t.
In many programming environments for C and C-derived languages on 64-bit machines, int variables are still 32 bits wide, but long integers and pointers are 64 bits wide. These are described as having an LP64 data model, which is an abbreviation of "Long, Pointer, 64".
In computing, decimal64 is a decimal floating-point computer number format that occupies 8 bytes (64 bits) in computer memory. Decimal64 is a decimal floating-point format, formally introduced in the 2008 revision [ 1 ] of the IEEE 754 standard, also known as ISO/IEC/IEEE 60559:2011.
A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 × 10 38.
Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.