Search results
Results from the WOW.Com Content Network
The Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers , card shuffling , and low-dimensional ...
pure compounds, mixtures, gas hydrates physical properties "DDB". Dissociation Constants: IUPAC Digitized pKa Dataset IUPAC: dissociation constants "Dissociation Constants". GitHub. DETHERM DECHEMA thermophysical properties "DETHERM". 75,000 DrugBank: University of Alberta drugs "DrugBank". DrugCentral University of New Mexico pharmaceuticals
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
A heat kernel signature (HKS) is a feature descriptor for use in deformable shape analysis and belongs to the group of spectral shape analysis methods. For each point in the shape, HKS defines its feature vector representing the point's local and global geometric properties. Applications include segmentation, classification, structure discovery ...
In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a -regular graph, [1] meaning a graph in which every vertex has degree .
Since = if and only if the graph is bipartite, we will refer to the graphs that satisfy this alternative definition but not the first definition bipartite Ramanujan graphs. If G {\displaystyle G} is a Ramanujan graph, then G × K 2 {\displaystyle G\times K_{2}} is a bipartite Ramanujan graph, so the existence of Ramanujan graphs is stronger.
In the physical sciences, the spectrum of a physical quantity (such as energy) may be called continuous if it is non-zero over the whole spectrum domain (such as frequency or wavelength) or discrete if it attains non-zero values only in a discrete set over the independent variable, with band gaps between pairs of spectral bands or spectral ...
In mathematics, the energy of a graph is the sum of the absolute values of the eigenvalues of the adjacency matrix of the graph. This quantity is studied in the context of spectral graph theory. More precisely, let G be a graph with n vertices. It is assumed that G is a simple graph, that is, it does not