Search results
Results from the WOW.Com Content Network
Lactic acid producing bacteria also act as a protective barrier against possible pathogens such as bacterial vaginosis and vaginitis species, different fungi, and protozoa through the production of hydrogen peroxide, and antibacterial compounds. It is unclear if further use of lactic acid, through fermentation, in the vaginal canal is present [6]
Leuconostoc mesenteroides is a species of lactic acid bacteria associated with fermentation, under conditions of salinity and low temperatures (such as lactic acid production in fermented sausages). [2] In some cases of vegetable and food storage, it was associated with pathogenicity (soft rot, slime and unpleasant odor). [3]
These lactic acid bacteria can carry out either homolactic fermentation, where the end-product is mostly lactic acid, or heterolactic fermentation, where some lactate is further metabolized to ethanol and carbon dioxide [18] (via the phosphoketolase pathway), acetate, or other metabolic products, e.g.: C 6 H 12 O 6 → CH 3 CHOHCOOH + C 2 H 5 ...
One method of doing this is to simply have the pyruvate do the oxidation; in this process, pyruvate is converted to lactate (the conjugate base of lactic acid) in a process called lactic acid fermentation: Pyruvate + NADH + H + → Lactate + NAD + This process occurs in the bacteria involved in making yogurt (the lactic acid causes the milk to ...
Lactic acid is used as a food preservative, curing agent, and flavoring agent. [51] It is an ingredient in processed foods and is used as a decontaminant during meat processing. [52] Lactic acid is produced commercially by fermentation of carbohydrates such as glucose, sucrose, or lactose, or by chemical synthesis. [51]
Leuconostoc lactis is a Gram-positive, non-motile, lactic acid bacterium that thrive best in acidic conditions and moderate temperatures. [2] [1] L. lactis is capable of acidifying culture media through lactose fermentation to pH levels of 4.0-4.1, and milk to levels below 5.4. [4]
One of the chemical processes that Pasteur studied was the fermentation of sugar into lactic acid, as occurs in the souring of milk. In an 1857 experiment, Pasteur was able to isolate microorganisms present in lactic acid ferment after the chemical process had taken place. [9] Pasteur then cultivated the microorganisms in a culture with his ...
Pathway by which glucose is converted to lactic acid as a means of energy production. L. acidophilus is a homofermentative anaerobic microorganism, meaning it only produces lactic acid as an end product of fermentation; and that it can only ferment hexoses (not pentoses) by way of the EMP pathway (glycolysis). [5]