enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feynman parametrization - Wikipedia

    en.wikipedia.org/wiki/Feynman_parametrization

    Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.

  3. Dimensional regularization - Wikipedia

    en.wikipedia.org/wiki/Dimensional_regularization

    In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini [1] as well as – independently and more comprehensively [2] – by 't Hooft and Veltman [3] for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number ...

  4. Feynman–Kac formula - Wikipedia

    en.wikipedia.org/wiki/Feynman–Kac_formula

    The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]

  5. Schwinger parametrization - Wikipedia

    en.wikipedia.org/wiki/Schwinger_parametrization

    Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. Using the well-known observation that 1 A n = 1 ( n − 1 ) ! ∫ 0 ∞ d u u n − 1 e − u A , {\displaystyle {\frac {1}{A^{n}}}={\frac {1}{(n-1)!}}\int _{0}^{\infty }du\,u^{n-1}e^{-uA},}

  6. Loop integral - Wikipedia

    en.wikipedia.org/wiki/Loop_integral

    For full evaluation of the Feynman diagram, there may be algebraic factors which must be evaluated. For example in QED, the tensor indices of the integral may be contracted with Gamma matrices , and identities involving these are needed to evaluate the integral.

  7. List of Feynman diagrams - Wikipedia

    en.wikipedia.org/wiki/List_of_Feynman_diagrams

    In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram

  8. very few teams have won it all - images.huffingtonpost.com

    images.huffingtonpost.com/2010-03-15-cheatsheet...

    This cheat sheet is the aftermath of hours upon hours of research on all of the teams in this year’s tournament field. I’ve listed each teams’ win and loss record, their against the

  9. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.