Search results
Results from the WOW.Com Content Network
An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.
An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.
Delocalizing the radical ion stabilizes the transition state structure. As a result, the energy of activation decreases, enhancing the rate of the overall reaction. According to the captodative effect, the rate of a reaction is the greatest when both the EDG and EWG are able to delocalize the radical ion in the transition state structure. [7]
You may be familiar with the Environmental Working Group (EWG) because they release a list of the most pesticide-filled produce every year called The Dirty Dozen. They also establish the produce ...
This is attributed to the resonance contribution of the EWG to withdraw electron density thereby increasing the susceptibility for nucleophilic attack on the carbonyl carbon. A change in rate occurs when X is EDG, as is evidenced when comparing the rates between X = Me and X = OMe, and nonlinearity is observed in the Hammett plot.
The lone pair of electrons on the anion then moves to the neighboring atom, thus expelling the leaving group and forming a double or triple bond. [1] The name of the mechanism - E1cB - stands for Elimination Unimolecular conjugate Base. Elimination refers to the fact that the mechanism is an elimination reaction and will lose two substituents.
AOL latest headlines, entertainment, sports, articles for business, health and world news.
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. [1] In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule.