Search results
Results from the WOW.Com Content Network
Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777. In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.
In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.
The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. [7] In 1906, Hazen and Williams provided an empirical formula that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and the slope of the energy line.
Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
where h f is the head loss due to friction, calculated from: the ratio of the length to diameter of the pipe L/D, the velocity of the flow V, and two empirical factors a and b to account for friction. This equation has been supplanted in modern hydraulics by the Darcy–Weisbach equation, which used it as a starting point.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.