enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .

  4. TI-36 - Wikipedia

    en.wikipedia.org/wiki/TI-36

    A prominent new feature is 2-line display, which includes a row of 11-character, 5x7-cell characters, used to display expressions entered by user. To complement the 2-line display, it also stores multiple expressions. The interface was streamlined to use shift menus to access most scientific functions.

  5. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    A fraction that is reducible can be reduced by dividing both the numerator and denominator by a common factor. It can be fully reduced to lowest terms if both are divided by their greatest common divisor. [5] In order to find the greatest common divisor, the Euclidean algorithm or prime factorization can be used. The Euclidean algorithm is ...

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    If the pseudorandom number = occurring in the Pollard ρ algorithm were an actual random number, it would follow that success would be achieved half the time, by the birthday paradox in () (/) iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic claim, and rigorous analysis of ...

  8. Dying To Be Free - The Huffington Post

    projects.huffingtonpost.com/dying-to-be-free...

    The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.

  9. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    For example, if N = 84923, (by starting at 292, the first number greater than √ N and counting up) the 505 2 mod 84923 is 256, the square of 16. So (505 − 16)(505 + 16) = 0 mod 84923. Computing the greatest common divisor of 505 − 16 and N using Euclid's algorithm gives 163, which is a factor of N.