Search results
Results from the WOW.Com Content Network
where m = k is the slope of the line and b = log a is the intercept on the (log y)-axis, meaning where log x = 0, so, reversing the logs, a is the y value corresponding to x = 1. [ 1 ] Equations
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
In two dimensions, the equation for non-vertical lines is often given in the slope–intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
In enzyme kinetics, a secondary plot uses the intercept or slope from several Lineweaver–Burk plots to find additional kinetic constants. [1] [2]For example, when a set of v by [S] curves from an enzyme with a ping–pong mechanism (varying substrate A, fixed substrate B) are plotted in a Lineweaver–Burk plot, a set of parallel lines will be produced.
In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
This can be seen on the Lineweaver–Burk plot as an increased intercept on the ordinate with no change in slope. Substrate affinity increases with uncompetitive inhibition, or lowers the apparent value of . Graphically uncompetitive inhibition can be identified in the plot parallel lines for the different concentrations of inhibitor..
The simplest method of drawing a line involves directly calculating pixel positions from a line equation. Given a starting point (,) and an end point (,), points on the line fulfill the equation = +, with = = being the slope of the line.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...