enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Hyperconjugation

    Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.

  3. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    Free-radical intermediate is stabilized by hyperconjugation; adjacent occupied sigma C–H orbitals donate into the electron-deficient radical orbital. A new method of anti-Markovnikov addition has been described by Hamilton and Nicewicz, who utilize aromatic molecules and light energy from a low-energy diode to turn the alkene into a cation ...

  4. Homolysis (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Homolysis_(chemistry)

    Carbon radicals are stabilized by hyperconjugation, meaning that more substituted carbons are more stable, and hence have lower BDEs. In 2005, Gronert proposed an alternative hypothesis involving the relief of substituent group steric strain (as opposed to the before accepted paradigm, which suggests that carbon radicals are stabilized via ...

  5. Cieplak effect - Wikipedia

    en.wikipedia.org/wiki/Cieplak_Effect

    The Cieplak effect relies on the stabilizing interaction of mixing full and empty orbitals to delocalize electrons, known as hyperconjugation. [2] When the highest occupied molecular orbital of one system and the lowest unoccupied molecular orbital of another system have comparable energies and spatial overlap, the electrons can delocalize and sink into a lower energy level.

  6. Radical (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Radical_(chemistry)

    In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. [1] [2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

  7. Negative hyperconjugation in silicon - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation...

    Negative hyperconjugation is a theorized phenomenon in organosilicon compounds, in which hyperconjugation stabilizes or destabilizes certain accumulations of positive charge. The phenomenon explains corresponding peculiarities in the stereochemistry and rate of hydrolysis .

  8. Free-radical reaction - Wikipedia

    en.wikipedia.org/wiki/Free-radical_reaction

    A free-radical reaction is any chemical reaction involving free radicals.This reaction type is abundant in organic reactions.Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomberg (1900) and the lead-mirror experiment [1] described by Friedrich Paneth in 1927.

  9. Negative hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation

    Negative hyperconjugation is seldom observed, though it can be most commonly observed when the σ *-orbital is located on certain C–F or C–O bonds. [ 3 ] [ 4 ] In negative hyperconjugation, the electron density flows in the opposite direction (from a π- or p-orbital to an empty σ * -orbital) than it does in the more common ...