Search results
Results from the WOW.Com Content Network
Liquid hydrogen is not the only way cryogenically to cool a magnet, indeed conventionally superconductors are cooled using liquid helium at 4.2K and for conventional conductor pulsed magnets (including copper) most attention has been given to liquid nitrogen at 77 K. [15] Liquid hydrogen can be expected to drive better performance than liquid ...
Natural hydrogen (known as white hydrogen, geologic hydrogen, [1] geogenic hydrogen, [2] or gold hydrogen) is molecular hydrogen present on Earth that is formed by natural processes [3] [4] (as opposed to hydrogen produced in a laboratory or in industry).
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
First, they cause simple parallel field lines. Second, because the fluid is processed in a disk, the magnet can be closer to the fluid, and in this geometry, magnetic field strengths increase as the 7th power of distance. Finally, the generator is compact, so the magnet is smaller and uses a much smaller percentage of the generated power.
The term magnet is typically reserved for objects that produce their own persistent magnetic field even in the absence of an applied magnetic field. Only certain classes of materials can do this. Most materials, however, produce a magnetic field in response to an applied magnetic field – a phenomenon known as magnetism.
The element hydrogen is virtually never called 'paramagnetic' because the monatomic gas is stable only at extremely high temperature; H atoms combine to form molecular H 2 and in so doing, the magnetic moments are lost (quenched), because of the spins pair. Hydrogen is therefore diamagnetic and the same holds true for many other elements ...
Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid (usually an organic solvent or water). [1] Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ...
The Earth's magnetic field at 0.5 gauss is too weak to magnetize a lodestone by itself. [9] [10] The leading theory is that lodestones are magnetized by the strong magnetic fields surrounding lightning bolts. [9] [10] [11] This is supported by the observation that they are mostly found near the surface of the Earth, rather than buried at great ...