enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...

  3. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  4. List of spatial analysis software - Wikipedia

    en.wikipedia.org/wiki/List_of_spatial_analysis...

    Python: BSD license: Minerva yes Linux, MAC OS, Windows: Fulton High Performance Computing Initiative (Arizona State University) Minerva Project Visualization (3D) High performance; ability to display large amounts of raster and vector from multiple sources C++: BSD license: GMap Creator yes Linux, MAC OS, Windows: CASA: CASA website for GMap ...

  5. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Here, a subjective judgment about the correspondence can be made (see perceptual mapping). Test the results for reliability and validity – Compute R-squared to determine what proportion of variance of the scaled data can be accounted for by the MDS procedure. An R-square of 0.6 is considered the minimum acceptable level.

  6. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    These clusters then could be visualized as a two-dimensional "map" such that observations in proximal clusters have more similar values than observations in distal clusters. This can make high-dimensional data easier to visualize and analyze.

  7. Cubes (OLAP server) - Wikipedia

    en.wikipedia.org/wiki/Cubes_(OLAP_server)

    Cubes is a light-weight open source multidimensional modelling and OLAP toolkit for development reporting applications and browsing of aggregated data written in Python programming language released under the MIT License.

  8. Parallel coordinates - Wikipedia

    en.wikipedia.org/wiki/Parallel_coordinates

    For a n-dimensional data set, at most n-1 relationships can be shown at a time without altering the approach. In time series visualization, there exists a natural predecessor and successor; therefore in this special case, there exists a preferred arrangement. However, when the axes do not have a unique order, finding a good axis arrangement ...

  9. GGobi - Wikipedia

    en.wikipedia.org/wiki/GGobi

    GGobi was created to look at data matrices. The designers were interested in exploring multi-dimensional data. The program developers went through many name changes before settling on GGobi (A combination of the words GTK+ and the Gobi Desert). The original concept, Dataviewer, began in the mid-80s, and a predecessor, XGobi, began in 1989.