Search results
Results from the WOW.Com Content Network
Like water, hydrogen bonding results in a high melting and boiling point compared to the other pnictogen hydrides, although 26% is lost on melting, another 7% as the liquid is heated to boiling, and the remaining 67% upon boiling. Other effects of hydrogen bonding are a high dielectric constant as well as low values of density, viscosity, and ...
Hydrazoic acid, also known as hydrogen azide, azic acid or azoimide, [2] is a compound with the chemical formula HN 3. [3] It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. It was first isolated in 1890 by Theodor Curtius. [4]
The salts produced by the action of ammonia on acids are known as the ammonium salts and all contain the ammonium ion ([NH 4] +). [38] Although ammonia is well known as a weak base, it can also act as an extremely weak acid. It is a protic substance and is capable of formation of amides (which contain the NH − 2 ion).
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic.
A metal hydride can be a thermodynamically a weak acid and a weak H − donor; it could also be strong in one category but not the other or strong in both. The H − strength of a hydride also known as its hydride donor ability or hydricity corresponds to the hydride's Lewis base strength. Not all hydrides are powerful Lewis bases.
An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. [4] The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5]
The hydride reacts with the weak Bronsted acid releasing H 2. Hydrides such as calcium hydride are used as desiccants, i.e. drying agents, to remove trace water from organic solvents. The hydride reacts with water forming hydrogen and hydroxide salt. The dry solvent can then be distilled or vacuum transferred from the "solvent pot".