Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
The seven problems were officially announced by John Tate and Michael Atiyah during a ceremony held on May 24, 2000 (at the amphithéâtre Marguerite de Navarre) in the Collège de France in Paris. [3] Grigori Perelman, who had begun work on the Poincaré conjecture in the 1990s, released his proof in 2002 and 2003. His refusal of the Clay ...
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
The no-three-in-line drawing of a complete graph is a special case of this result with =. [12] The no-three-in-line problem also has applications to another problem in discrete geometry, the Heilbronn triangle problem. In this problem, one must place points, anywhere in a unit square, not restricted to a grid. The goal of the placement is to ...
The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume , is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?
Because of this, often, the only simple effective way to deal with multiplication by expressions involving variables is to substitute each of the solutions obtained into the original equation and confirm that this yields a valid equation. After discarding solutions that yield an invalid equation, we will have the correct set of solutions.
First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better? If this technique fails, Pólya advises: [6] "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"