Search results
Results from the WOW.Com Content Network
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
In nuclear physics, a beta decay transition is the change in state of an atomic nucleus undergoing beta decay. When undergoing beta decay, a nucleus emits a beta particle and a corresponding neutrino , transforming the original nuclide into one with the same mass number but differing atomic number (nuclear charge).
Beta decay specifically involves the emission of a W − boson from one of the down quarks hidden within the neutron, thereby converting the down quark into an up quark and consequently the neutron into a proton. The following diagram gives a summary sketch of the beta decay process according to the present level of understanding.
An interesting example discussed in a final section, is bound state beta decay of rhenium-187. In this process, the beta electron-decay of the parent nuclide is not accompanied by beta electron emission, because the beta particle has been captured into the K-shell of the emitting atom. An antineutrino is emitted, as in all negative beta decays.
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively. [2] Beta particles with an energy ...
Inverse beta decay proceeds as [2] [3] [4] ν e + p → e + + n, where an electron antineutrino (ν e) interacts with a proton (p) to produce a positron (e +) and a neutron (n). The IBD reaction can only be initiated when the antineutrino possesses at least 1.806 MeV [3] [4] of kinetic energy (called the threshold energy). This threshold energy ...
The neutrinos emitted in beta decay will have a spectrum of energy ranges, because although momentum is conserved, the momentum can be shared in any way between the positron and neutrino, with either emitted at rest and the other taking away the full energy, or anything in between, so long as all the energy from the Q-value is used.
The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is: