Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...
Radioactive iodine-131 is a common fission product; it was a major component of the radioactivity released from the Chernobyl disaster, leading to nine fatal cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the ...
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).
Lugol's iodine is a liquid made up of two parts potassium iodide for every one part elemental iodine in water. [8] Lugol's iodine was first made in 1829 by the French physician Jean Lugol. [7] [8] It is on the World Health Organization's List of Essential Medicines. [9] [10] Lugol's iodine is available as a generic medication and over the ...
The typical adult dose is one 130 mg tablet per 24 hours, supplying 100 mg (100,000 micrograms) of ionic iodine (the typical daily dose of iodine for normal health is on the order of 100 micrograms). Ingestion of this large dose of non-radioactive iodine minimises the uptake of radioactive iodine by the thyroid gland. [19]
129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.
For biological effects of substances such as radioactive iodine the ingestion of non-radioactive isotopes may substantially reduce the biological uptake of the radioactive form, and chelation therapy may be applied to accelerate the removal of radioactive materials formed from heavy metals from the body by natural processes.