Search results
Results from the WOW.Com Content Network
Internal resistance model of a source of voltage, where ε is the electromotive force of the source, R is the load resistance, V is the voltage drop across the load, I is the current delivered by the source, and r is the internal resistance. In electrical engineering, a practical electric power source which is a linear circuit may, according to ...
Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions inside a battery. It is impossible to directly measure the internal resistance of a battery, but it can be calculated from current and voltage data measured from a circuit.
Similarly, the rate of flow of electrical charge, that is, the electric current, through an electrical resistor is proportional to the difference in voltage measured across the resistor. More generally, the hydraulic head may be taken as the analog of voltage, and Ohm's law is then analogous to Darcy's law which relates hydraulic head to the ...
While I–V curves are applicable to any electrical system, they find wide use in the field of biological electricity, particularly in the sub-field of electrophysiology. In this case, the voltage refers to the voltage across a biological membrane, a membrane potential , and the current is the flow of charged ions through channels in this membrane.
In electronics, voltage drop is the decrease of electric potential along the path of a current flowing in a circuit. Voltage drops in the internal resistance of the source, across conductors, across contacts, and across connectors are undesirable because some of the energy supplied is dissipated.
A point at which terminals of more than two components are joined. A conductor with a substantially zero resistance is considered to be a node for the purpose of analysis. Branch: The component(s) joining two nodes. Mesh: A group of branches within a network joined so as to form a complete loop such that there is no other loop inside it. Port