Search results
Results from the WOW.Com Content Network
The classical table/wheel of the standard genetic code is arbitrarily organized based on codon position 1. Saier, [12] following observations from, [13] showed that reorganizing the wheel based instead on codon position 2 (and reordering from UCAG to UCGA) better arranges the codons by the hydrophobicity of their encoded amino acids. This ...
The first two bases in the codon create the coding specificity, for they form strong Watson-Crick base pairs and bond strongly to the anticodon of the tRNA. When reading 5' to 3' the first nucleotide in the anticodon (which is on the tRNA and pairs with the last nucleotide of the codon on the mRNA) determines how many nucleotides the tRNA ...
The anticodon loop is a 5-bp stem whose loop contains the anticodon. [6] The TΨC loop is named so because of the characteristic presence of the unusual base Ψ in the loop, where Ψ is pseudouridine, a modified uridine. The modified base is often found within the sequence 5'-TΨCGA-3', with the T (ribothymidine, m5U) and A forming a base pair ...
The coding mechanism is the same for all organisms: three-base codons, tRNA, ribosomes, single direction reading and translating single codons into single amino acids. [69] The most extreme variations occur in certain ciliates where the meaning of stop codons depends on their position within mRNA.
A length of 1500 base pairs seemed reasonable at the time (1965). [14] This was based on the idea that the gene was the DNA that was directly responsible for production of the functional product. The discovery of introns in the 1970s meant that many eukaryotic genes were much larger than the size of the functional product would imply.
These wobble base pairs are very important in tRNA. Most organisms have less than 45 tRNA molecules even though 61 tRNA molecules would technically be necessary to canonically pair to the codon. Wobble base pairing allows for the 5' anticodon to bond to a non-standard base pair. Examples of wobble base pairs are given in Figure 6.
A base is attached to the 1 ... metal ions such as Mg 2+ are needed to stabilise many ... It has sites for amino acid attachment and an anticodon region for codon ...
The anticodon that recognizes a codon during the translation process is located on one of the unpaired loops in the tRNA. Two nested stem-loop structures occur in RNA pseudoknots, where the loop of one structure forms part of the second stem. Many ribozymes also feature stem-loop structures.