Search results
Results from the WOW.Com Content Network
This equation is called the eigenvalue equation for T, and the scalar λ is the eigenvalue of T corresponding to the eigenvector v. T(v) is the result of applying the transformation T to the vector v, while λv is the product of the scalar λ with v. [37] [38]
Functions can be written as a linear combination of the basis functions, = = (), for example through a Fourier expansion of f(t). The coefficients b j can be stacked into an n by 1 column vector b = [b 1 b 2 … b n] T. In some special cases, such as the coefficients of the Fourier series of a sinusoidal function, this column vector has finite ...
For each eigenvalue λ i, we have a specific eigenvalue equation = There will be 1 ≤ m i ≤ n i linearly independent solutions to each eigenvalue equation. The linear combinations of the m i solutions (except the one which gives the zero vector) are the eigenvectors associated with the eigenvalue λ i .
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form
The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).
Let an eigenvalue equation be solved by linearly expanding the unknown function in terms of N known functions. Let the resulting eigenvalues be ordered from the smallest (lowest), λ 1, to the largest (highest), λ N. Let the same eigenvalue equation be solved using a basis set of dimension N + 1 that comprises the previous N functions plus an ...
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A.