enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    In artificial neural networks, the variance increases and the bias decreases as the number of hidden units increase, [12] although this classical assumption has been the subject of recent debate. [4] Like in GLMs, regularization is typically applied. In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).

  3. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    This can be seen by noting the following formula, which follows from the Bienaymé formula, for the term in the inequality for the expectation of the uncorrected sample variance above: ⁡ [(¯)] =. In other words, the expected value of the uncorrected sample variance does not equal the population variance σ 2 , unless multiplied by a ...

  4. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Therefore, manipulating corresponds to trading-off bias and variance. For problems with high-variance w {\displaystyle w} estimates, such as cases with relatively small n {\displaystyle n} or with correlated regressors, the optimal prediction accuracy may be obtained by using a nonzero λ {\displaystyle \lambda } , and thus introducing some ...

  5. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    This could be appropriate for example when errors in y and x are both caused by measurements, and the accuracy of measuring devices or procedures are known. The case when δ = 1 is also known as the orthogonal regression. Regression with known reliability ratio λ = σ² ∗ / ( σ² η + σ² ∗), where σ² ∗ is the variance of the latent ...

  6. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    This is known as the bias–variance tradeoff. Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.

  7. Ensemble averaging (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Ensemble_averaging...

    This is known as the bias–variance tradeoff. Ensemble averaging creates a group of networks, each with low bias and high variance, and combines them to form a new network which should theoretically exhibit low bias and low variance. Hence, this can be thought of as a resolution of the bias–variance tradeoff. [4]

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.

  9. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    This is the bias-variance tradeoff; if h is too small, the estimate exhibits large variation; while at large h, the estimate exhibits large bias. Careful choice of bandwidth is therefore crucial when applying local regression. Mathematical methods for bandwidth selection require, firstly, formal criteria to assess the performance of an estimate.