Search results
Results from the WOW.Com Content Network
An example connected graph, with 6 vertices. Partitioning into two connected graphs. In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and ...
DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]
Global approaches rely on properties of the entire graph and do not rely on an arbitrary initial partition. The most common example is spectral partitioning, where a partition is derived from approximate eigenvectors of the adjacency matrix, or spectral clustering that groups graph vertices using the eigendecomposition of the graph Laplacian ...
Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster
Real high-dimensional data is typically sparse, and tends to have relevant low dimensional features. One task of TDA is to provide a precise characterization of this fact. For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations [1] forms a closed circle in state space. TDA provides tools to detect ...
NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators. [15] [46] This provides a theoretical foundation for using NMF for data clustering. However, k-means does not enforce non-negativity on its centroids, so the ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Kernel methods can be thought of as instance-based learners: rather than learning some fixed set of parameters corresponding to the features of their inputs, they instead "remember" the -th training example (,) and learn for it a corresponding weight .