enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    The number of clusters chosen should therefore be 4. In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set. The method consists of plotting the explained variation as a function of the number of clusters and picking the elbow of the curve as the number of clusters to

  4. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    A C++ implementation of Barnes-Hut is available on the github account of one of the original authors. The R package Rtsne implements t-SNE in R. ELKI contains tSNE, also with Barnes-Hut approximation; scikit-learn, a popular machine learning library in Python implements t-SNE with both exact solutions and the Barnes-Hut approximation.

  5. Silhouette (clustering) - Wikipedia

    en.wikipedia.org/wiki/Silhouette_(clustering)

    One can also increase the likelihood of the silhouette being maximized at the correct number of clusters by re-scaling the data using feature weights that are cluster specific. [ 4 ] Kaufman et al. introduced the term silhouette coefficient for the maximum value of the mean s ( i ) {\displaystyle s(i)} over all data of the entire dataset, [ 5 ...

  6. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  7. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  8. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    k-medoids is a classical partitioning technique of clustering that splits the data set of n objects into k clusters, where the number k of clusters assumed known a priori (which implies that the programmer must specify k before the execution of a k-medoids algorithm).

  9. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number but larger clusters. This method builds the hierarchy from the individual elements by progressively merging clusters. In our example, we have six elements {a} {b} {c} {d} {e} and {f}.