Search results
Results from the WOW.Com Content Network
Example components were CPU, tape drives, hard disks, card-readers, and printers. Computers that predominantly used peripherals were characterized as I/O bound. Establishing that a computer is frequently CPU-bound implies that upgrading the CPU or optimizing code will improve the overall computer performance.
In the same display, the "Mem Usage" column in Windows XP and Server 2003, or the "Working Set (Memory)" column in Windows Vista and later, shows each process's current working set. This is a count of physical memory (RAM) rather than virtual address space.
An idle computer has a load number of 0 (the idle process is not counted). Each process using or waiting for CPU (the ready queue or run queue) increments the load number by 1. Each process that terminates decrements it by 1. Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states.
Some second-level CPU caches run slower than the processor core. When the processor needs to access external memory, it starts placing the address of the requested information on the address bus. It then must wait for the answer, that may come back tens if not hundreds of cycles later. Each of the cycles spent waiting is called a wait state.
At this point, the CPU sits idle. The CPU-bound process will then move back to the ready queue and be allocated the CPU. Again, all the I/O processes end up waiting in the ready queue until the CPU-bound process is done. There is a convoy effect as all the other processes wait for the one big process to get off the CPU. This effect results in ...
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.
Neglecting extrinsic factors: Amdahl's Law addresses computational parallelism, neglecting extrinsic factors such as data persistence, I/O operations, and memory access overheads, and assumes idealized conditions.
[citation needed] The main factor involved is an increase in the available memory buffer size in every intervening persistence mechanism along the path. Another important factor to consider is the further reduction of CRC32's effectiveness in detecting errors within even larger frame sizes.