enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]

  3. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.

  4. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    Non-convex: a line may be found which meets its boundary more than twice. Equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple: the boundary of the polygon does not cross itself. All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater ...

  5. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

  6. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.

  7. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    There are 17 combinations of regular convex polygons that form 21 types of plane-vertex tilings. [6] [7] Polygons in these meet at a point with no gap or overlap. Listing by their vertex figures, one has 6 polygons, three have 5 polygons, seven have 4 polygons, and ten have 3 polygons. [8]

  8. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.

  9. Cauchy's theorem (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_theorem_(geometry)

    It states that convex polytopes in three dimensions with congruent corresponding faces must be congruent to each other. That is, any polyhedral net formed by unfolding the faces of the polyhedron onto a flat surface, together with gluing instructions describing which faces should be connected to each other, uniquely determines the shape of the ...