enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is the slope of the linear part of the stressstrain curve for a material under tension or compression. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial ...

  3. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stressstrain curve typically refers to the relationship between axial normal stress and ...

  4. Maxwell material - Wikipedia

    en.wikipedia.org/wiki/Maxwell_material

    where E is the elastic modulus and η is the material coefficient of viscosity. This model describes the damper as a Newtonian fluid and models the spring with Hooke's law. In a Maxwell material, stress σ, strain ε and their rates of change with respect to time t are governed by equations of the form: [1]

  5. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Stress-strain curve: Plot the calculated stress versus the applied strain to create a stress-strain curve. The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G)

  6. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  7. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.

  8. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Download as PDF; Printable version ... the stress-strain relation for linear elastic materials can be expressed in matrix form as ... is the Young's modulus along ...

  9. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    All of these properties indicate the importance of calculating the true stress-strain curve for further analyzing the behavior of materials in sudden environment. 4) A graphical method, so-called "Considere construction", can help determine the behavior of stress-strain curve whether necking or drawing happens on the sample.