Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
Line chart showing the population of the town of Pushkin, Saint Petersburg from 1800 to 2010, measured at various intervals. A line chart or line graph, also known as curve chart, [1] is a type of chart that displays information as a series of data points called 'markers' connected by straight line segments. [2]
Simple graphs: Graphs without self-loops or multi-edges. Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node.
The loop is: reinforcing if, after going around the loop, one ends up with the same result as the initial assumption. balancing if the result contradicts the initial assumption. Or to put it in other words: reinforcing loops have an even number of negative links (zero also is even, see example below) balancing loops have an odd number of ...
Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some ...
quasi-line graph A quasi-line graph or locally co-bipartite graph is a graph in which the open neighborhood of every vertex can be partitioned into two cliques. These graphs are always claw-free and they include as a special case the line graphs. They are used in the structure theory of claw-free graphs. quasi-random graph sequence
A chain graph is a graph which may have both directed and undirected edges, but without any directed cycles (i.e. if we start at any vertex and move along the graph respecting the directions of any arrows, we cannot return to the vertex we started from if we have passed an arrow). Both directed acyclic graphs and undirected graphs are special ...
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are ...