enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It appears as a factor in various probability-distribution functions and other formulas in the fields of probability , statistics , analytic number theory , and combinatorics .

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    Here, the expression = ()! is the binomial coefficient, and = () (+) is the "falling factorial" or "lower factorial", while the empty product (x) 0 is defined to be 1. In this particular case, there is an assumption of unit steps for the changes in the values of x , h = 1 of the generalization below.

  7. Memoization - Wikipedia

    en.wikipedia.org/wiki/Memoization

    function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...

  8. Talk:Factorial - Wikipedia

    en.wikipedia.org/wiki/Talk:Factorial

    The Gamma and Pi functions Main article: Gamma function The Gamma function, as plotted here along the real axis, extends the factorial to a smooth function defined for all non-integer values. The factorial function, generalized to all complex numbers except negative integers. For example, 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2.

  9. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations: