enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Local search (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(constraint...

    Local search usually works on all variables, improving a complete assignment to them. However, local search can also be run on a subset of variables, using some other mechanism for the other variables. A proposed algorithm works on a cycle cutset, which is a set of variables that, if removed from the problem, makes it acyclic.

  3. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of Computer Programming (1973) called it the post-office problem, referring to an application of assigning to a residence the nearest post ...

  4. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.

  5. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general guide, if the last few stages of the tour are comparable in length to the first stages, then the tour is reasonable; if they are much greater ...

  6. Greedy randomized adaptive search procedure - Wikipedia

    en.wikipedia.org/wiki/Greedy_randomized_adaptive...

    The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search . [ 1 ]

  7. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to some heuristic. But in beam search, only a predetermined number of best partial solutions are kept as candidates. [1] It is thus a greedy algorithm.

  8. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    The greedy algorithm heuristic says to pick whatever is currently the best next step regardless of whether that prevents (or even makes impossible) good steps later. It is a heuristic in the sense that practice indicates it is a good enough solution, while theory indicates that there are better solutions (and even indicates how much better, in ...

  9. Tabu search - Wikipedia

    en.wikipedia.org/wiki/Tabu_search

    Tabu search (TS) is a metaheuristic search method employing local search methods used for mathematical optimization. It was created by Fred W. Glover in 1986 [ 1 ] and formalized in 1989. [ 2 ] [ 3 ]