enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Carbon and each oxygen atom will have a 2s atomic orbital and a 2p atomic orbital, where the p orbital is divided into p x, p y, and p z. With these derived atomic orbitals, symmetry labels are deduced with respect to rotation about the principal axis which generates a phase change, pi bond ( π ) [ 26 ] or generates no phase change, known as a ...

  3. Carbon monoxide - Wikipedia

    en.wikipedia.org/wiki/Carbon_monoxide

    Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is ...

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Electron configuration. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by ...

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In chemistry, a molecular orbital (/ ɒrbədl /) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.

  7. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    A hypothetical example of band formation when a large number of carbon atoms is brought together to form a diamond crystal. The right graph shows the energy levels as a function of the spacing between atoms. When the atoms are far apart (right side of graph) the eigenstates are the atomic orbitals of carbon.

  8. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give individual chemical bonds when a molecule is formed.

  9. Non-bonding orbital - Wikipedia

    en.wikipedia.org/wiki/Non-bonding_orbital

    An example of a non-similar one is the non-bonding orbital of the allyl anion, whose electron density is concentrated on the first and third carbon atoms. [ 1 ] In fully delocalized canonical molecular orbital theory, it is often the case that none of the molecular orbitals of a molecule are strictly non-bonding in nature.