Search results
Results from the WOW.Com Content Network
Many linear dynamical system tests in control theory, especially those related to controllability and observability, involve checking the rank of the Krylov subspace. These tests are equivalent to finding the span of the Gramians associated with the system/output maps so the uncontrollable and unobservable subspaces are simply the orthogonal ...
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (n, k) code. Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code ...
A subspace V ⊂ R n is a controlled invariant subspace if and only if AV ⊂ V + Im B. If V is a controlled invariant subspace, then there exists a matrix K such that the input u(t) = Kx(t) keeps the state within V; this is a simple feedback control (Ghosh 1985, Thm 1.1).
The cyclic subspace associated with a vector v in a vector space V and a linear transformation T of V is called the T-cyclic subspace generated by v. The concept of a cyclic subspace is a basic component in the formulation of the cyclic decomposition theorem in linear algebra.
Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.
It is generally used in solving non-linear equations like Euler's equations in computational fluid dynamics. Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To ...