Search results
Results from the WOW.Com Content Network
If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients; If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0.
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1]
The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [1] or sometimes zeroth-order logic.
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
For example, if P(x) is the predicate "x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as: ()
Thus, the function f itself can be listed as: f = {((0, 0), f 0), ((0, 1), f 1), ((1, 0), f 2), ((1, 1), f 3)}, where f 0, f 1, f 2, and f 3 are each Boolean, 0 or 1, values as members of the codomain {0, 1}, as the outputs corresponding to the member of the domain, respectively. Rather than a list (set) given above, the truth table then ...
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.