Search results
Results from the WOW.Com Content Network
Oceanic lithosphere consists mainly of mafic crust and ultramafic mantle and is denser than continental lithosphere. Young oceanic lithosphere, found at mid-ocean ridges, is no thicker than the crust, but oceanic lithosphere thickens as it ages and moves away from the mid-ocean ridge. The oldest oceanic lithosphere is typically about 140 ...
The age of the oceanic crust can be used to estimate the (thermal) thickness of the lithosphere, where young oceanic crust has not had enough time to cool the mantle beneath it, while older oceanic crust has thicker mantle lithosphere beneath it. [19] The oceanic lithosphere subducts at what are known as convergent boundaries. These boundaries ...
At this point basaltic oceanic crust and upper mantle lithosphere begins to form between the separating continental fragments. When one of the rifts opens into the existing ocean, the rift system is flooded with seawater and becomes a new sea. The Red Sea is an example of a new arm of the sea.
As the oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere, which sits above the less rigid and viscous asthenosphere. [3] Age of oceanic crust.
Subduction can begin spontaneously if the denser oceanic lithosphere can founder and sink beneath the adjacent oceanic or continental lithosphere through vertical forcing only; alternatively, existing plate motions can induce new subduction zones by horizontally forcing the oceanic lithosphere to rupture and sink into the asthenosphere.
As a consequence, a powerful source generating plate motion is the excess density of the oceanic lithosphere sinking in subduction zones. When the new crust forms at mid-ocean ridges, this oceanic lithosphere is initially less dense than the underlying asthenosphere, but it becomes denser with age as it conductively cools and thickens.
The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle. The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath ...
Specifically, oceanic lithosphere (lithosphere underneath the oceanic plates) and subcontinental lithosphere, is defined as a mechanical boundary layer that heats via conduction and the asthenosphere is a convecting adiabatic layer. In contrast to oceanic lithosphere, which experiences quicker rates of recycling, subcontinental lithosphere is ...