Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
A classic example of a problem which a regular grammar cannot handle is the question of whether a given string contains correctly nested parentheses. (This is typically handled by a Chomsky Type 2 grammar, also termed a context-free grammar .)
In computer programming, an S-expression (or symbolic expression, abbreviated as sexpr or sexp) is an expression in a like-named notation for nested list (tree-structured) data. S-expressions were invented for, and popularized by, the programming language Lisp, which uses them for source code as well as data.
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
The Zen of Python is a collection of 19 "guiding principles" for writing computer programs that influence the design of the Python programming language. [1] Python code that aligns with these principles is often referred to as "Pythonic". [2] Software engineer Tim Peters wrote this set of principles and posted it on the Python mailing list in ...
Both Python's for and while loops support such an else clause, which is executed only if early exit of the loop has not occurred. Some languages support breaking out of nested loops; in theory circles, these are called multi-level breaks. One common use example is searching a multi-dimensional table.
In Python, the set-builder's braces are replaced with square brackets, parentheses, or curly braces, giving list, generator, and set objects, respectively. Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar.