Search results
Results from the WOW.Com Content Network
A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...
DNA uses T instead. This mRNA molecule will instruct a ribosome to synthesize a protein according to this code. The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins.
It is also possible to translate either by hand (for short sequences) or by computer (after first programming one appropriately, see section below); this allows biologists and chemists to draw out the chemical structure of the encoded protein on paper. First, convert each template DNA base to its RNA complement (note that the complement of A is ...
In bioinformatics and biochemistry, the FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, in which nucleotides or amino acids are represented using single-letter codes. The format allows for sequence names and comments to precede the sequences.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Historically, short protein sequences (10 to 15 residues) determined by Edman degradation were back-translated into DNA sequences that could be used as probes or primers to isolate molecular clones of the corresponding gene or complementary DNA. The sequence of the cloned DNA was then determined and used to deduce the full amino-acid sequence ...
An open reading frame (ORF) is a reading frame that has the potential to be transcribed into RNA and translated into protein. It requires a continuous sequence of DNA which may include a start codon, through a subsequent region which has a length that is a multiple of 3 nucleotides, to a stop codon in the same reading frame.
DNA is initially transcribed into a messenger RNA (mRNA) molecule. The mRNA is then translated into a protein. (See Central dogma of molecular biology.) mRNA structure, approximately to scale for a human mRNA. In molecular genetics, an untranslated region (or UTR) refers to either of two sections, one on each side of a coding sequence on a ...