Search results
Results from the WOW.Com Content Network
For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
That is to say, the north vector cannot be described in terms of the east vector, and vice versa. The third "5 miles northeast" vector is a linear combination of the other two vectors, and it makes the set of vectors linearly dependent, that is, one of the three vectors is unnecessary to define a specific location on a plane.
The two polar coordinates of a point in a plane may be considered as a two dimensional vector. Such a vector consists of a magnitude (or length) and a direction (or angle). The magnitude, typically represented as r, is the distance from a starting point, the origin, to the point which is represented.
[9] [12] Bound vector quantities are formulated as a directed line segment, with a definite initial point besides the magnitude and direction of the main vector. [9] [11] For example, a force on the Euclidean plane has two Cartesian components in SI unit of newtons and an accompanying two-dimensional position vector in meters, for a total of ...
Two examples (r = −1 and r = 2) are given below: The scalar multiplications −a and 2a of a vector a. Scalar multiplication is distributive over vector addition in the following sense: r(a + b) = ra + rb for all vectors a and b and all scalars r. One can also show that a − b = a + (−1)b.
A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.