Search results
Results from the WOW.Com Content Network
The exponential function in parentheses corresponds to the fraction of total change that has been achieved as time passes and the difference between C ss and C 0 equals the total amount of change. Finally, at steady state, the concentration is expected to equal the rate of synthesis, production or infusion divided by the first-order elimination ...
b) The straight portion of the graph for substrate concentration over time is indicative of a zero-order dependence on substrate for most of the reaction, but the curve at low [A] is indicative of a change to (in this case) a first-order dependence on [A].
in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...
The second assumption is that the total enzyme concentration does not change over time, thus [] = [] + [] =!. The Michaelis constant K M is experimentally defined as the concentration at which the rate of the enzyme reaction is half V max , which can be verified by substituting [S] = K M into the Michaelis–Menten equation and can also be seen ...
The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH 3 Br) is a bimolecular nucleophilic substitution (S N 2) reaction in a single bimolecular step. Its rate law is second-order: r = k[R−Br][OH −].
The steady-state rate equation is of mixed order and predicts that a unimolecular reaction can be of either first or second order, depending on which of the two terms in the denominator is larger. At sufficiently low pressures, k − 1 [ M ] ≪ k 2 {\displaystyle k_{-1}[{\ce {M}}]\ll k_{2}} so that d [ P ] / d t = k 1 [ A ] [ M ...
That is, the closer time points are, the closer the trapezoids reflect the actual shape of the concentration-time curve. The number of time points available in order to perform a successful NCA analysis should be enough to cover the absorption, distribution and elimination phase to accurately characterize the drug.
The rate of condensation at any time t can then be derived from the rate of disappearance of -COOH groups and = [] = [] [] The second-order [] term arises from its use as a catalyst, and k is the rate constant. For a system with equivalent quantities of acid and glycol, the functional group concentration can be written simply as