enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    An unpaired electron has a magnetic dipole moment, while an electron pair has no dipole moment because the two electrons have opposite spins so their magnetic dipole fields are in opposite directions and cancel. Thus an atom with unpaired electrons acts as a magnetic dipole and interacts with a magnetic field. Only elements with unpaired ...

  3. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    The pairs often exhibit a negative polar character with their high charge density and are located closer to the atomic nucleus on average compared to the bonding pair of electrons. The presence of a lone pair decreases the bond angle between the bonding pair of electrons, due to their high electric charge, which causes great repulsion between ...

  4. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Shows location of unpaired electrons, bonded atoms, and bond angles. The bond angle for water is 104.5°. Valence shell electron pair repulsion ( VSEPR ) theory ( / ˈ v ɛ s p ər , v ə ˈ s ɛ p ər / VESP -ər , [ 1 ] : 410 və- SEP -ər [ 2 ] ) is a model used in chemistry to predict the geometry of individual molecules from the number of ...

  5. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    Each Cu 2+ ion has a d 9 electronic configuration, and so should have one unpaired electron. If there were a covalent bond between the copper ions, the electrons would pair up and the compound would be diamagnetic. Instead, there is an exchange interaction in which the spins of the unpaired electrons become partially aligned to each other.

  6. Dangling bond - Wikipedia

    en.wikipedia.org/wiki/Dangling_bond

    Creating dangling bonds with unpaired electrons can, for example, be achieved by cutting or putting large mechanical strain on a polymer. In this process, covalent bonds between carbon atoms are broken. One electron can end up on each of the carbon atoms that originally contributed to the bond, leading to two unpaired dangling bonds. [5]

  7. Electron paramagnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Electron_paramagnetic...

    An unpaired electron can gain or lose angular momentum, which can change the value of its g-factor, causing it to differ from . This is especially significant for chemical systems with transition-metal ions. Systems with multiple unpaired electrons experience electron–electron interactions that give rise to "fine" structure.

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    Each bond consists of a pair of electrons, so if t is the total number of electrons to be placed and n is the number of single bonds just drawn, t−2n electrons remain to be placed. These are temporarily drawn as dots, one per electron, to a maximum of eight per atom (two in the case of hydrogen), minus two for each bond.