Search results
Results from the WOW.Com Content Network
Nitrogen oxides are released during manufacturing of nitrogen fertilizers. Though nitrous oxide is emitted during its application, it is then reacted in atmosphere to form nitrogen oxides. This third source is attributed to the reaction of atmospheric nitrogen, N 2, with radicals such as C, CH, and CH 2 fragments derived from fuel, [26] rather ...
NO y (or NOy) refers to the sum of NO x and all oxidized atmospheric odd-nitrogen species (e.g. the sum of NO x, HNO 3, HNO 2, etc.) NO z (or NOz) = NO y − NO x; Mixed Oxides of Nitrogen ("MON"): solutions of nitric oxide in dinitrogen tetroxide/nitrogen dioxide.
Nitric oxide (nitrogen oxide or nitrogen monoxide [1]) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen . Nitric oxide is a free radical : it has an unpaired electron , which is sometimes denoted by a dot in its chemical formula ( • N=O or • NO).
Reactive nitrogen species act together with reactive oxygen species (ROS) to damage cells, causing nitrosative stress. Therefore, these two species are often collectively referred to as ROS/RNS. Reactive nitrogen species are also continuously produced in plants as by-products of aerobic metabolism or in response to stress. [3]
This kind of visible air pollution is composed of nitrogen oxides, sulfur oxide, ozone, smoke and other particulates. Man-made smog is derived from coal combustion emissions, vehicular emissions, industrial emissions, forest and agricultural fires and photochemical reactions of these emissions.
Ground-level ozone is both naturally occurring and anthropogenically formed. It is the primary constituent of urban smog, forming naturally as a secondary pollutant through photochemical reactions involving nitrogen oxides and volatile organic compounds in the presence of bright sunshine with high temperatures. [35]
The most common denitrification process is outlined below, with the nitrogen oxides being converted back to gaseous nitrogen: 2 NO 3 − + 10 e − + 12 H + → N 2 + 6 H 2 O. The result is one molecule of nitrogen and six molecules of water. Denitrifying bacteria are a part of the N cycle, and consists of sending the N back into the atmosphere.
Nitric oxide reductase is in Class 1, therefore it is an oxidoreductases. [5] Figure 1. The Nitrogen Cycle. Nitric oxide (NO) and nitrous oxide (N 2 O) are intermediates in the denitrification of nitrate (NO 3 −) to nitrogen gas (N 2). Nitric oxide reductase reduces NO to N 2 O.