enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A saddle rectangle has 4 nonplanar vertices, alternated from vertices of a rectangular cuboid, with a unique minimal surface interior defined as a linear combination of the four vertices, creating a saddle surface. This example shows 4 blue edges of the rectangle, and two green diagonals, all being diagonal of the cuboid rectangular faces.

  3. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  4. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. [1] [3] Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram. Rhombohedron is a cuboid with six rhombus faces.

  5. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid is a convex polyhedron with six rectangle faces. These are often called "cuboids", without qualifying them as being rectangular, but a cuboid can also refer to a more general class of polyhedra, with six quadrilateral faces. [1] The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are ...

  6. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  7. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    A crossed prism is a nonconvex polyhedron constructed from a prism, where the vertices of one base are inverted around the center of this base (or rotated by 180°). This transforms the side rectangular faces into crossed rectangles. For a regular polygon base, the appearance is an n-gonal hour glass. All oblique edges pass through a single ...

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition: The vertices of a convex regular polyhedron all lie on a sphere. All the dihedral angles of the polyhedron are equal; All the vertex figures of the polyhedron are regular polygons.

  9. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.