Ads
related to: telescoping series how to solve linear functions with x as a fraction worksheeteducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1. Formally, a linear-fractional program is defined ...
A series or, redundantly, an infinite series, is an infinite sum.It is often represented as [8] [15] [16] + + + + + +, where the terms are the members of a sequence of numbers, functions, or anything else that can be added.
Given some initial conditions, we can either solve the recurrence entirely or obtain a solution in power series form. Since the ratio of coefficients A k / A k − 1 {\displaystyle A_{k}/A_{k-1}} is a rational function , the power series can be written as a generalized hypergeometric series .
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
Ads
related to: telescoping series how to solve linear functions with x as a fraction worksheeteducator.com has been visited by 10K+ users in the past month