Search results
Results from the WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754, and provided the sum does not overflow and, if it underflows, underflows gradually, it can be proven that + = +.
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The cardinality constraints can be generalized by allowing a different constraint on each subset. This variant is introduced in the "open problems" section of, [12] who call the k i-partitioning problem. He, Tan, Zhu and Yao [16] present an algorithm called HARMONIC2 for maximizing the smallest sum with different cardinality constraints.
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The 4-partition problem is a variant in which S contains n = 4 m integers, the sum of all integers is , and the goal is to partition it into m quadruplets, all with a sum of T. It can be assumed that each integer is strictly between T /5 and T /3.