enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.

  4. International System of Quantities - Wikipedia

    en.wikipedia.org/wiki/International_System_of...

    A quantity of dimension one is historically known as a dimensionless quantity (a term that is still commonly used); all its dimensional exponents are zero and its dimension symbol is . Such a quantity can be regarded as a derived quantity in the form of the ratio of two quantities of the same dimension.

  5. Category:Dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/Category:Dimensionless...

    Download as PDF; Printable version; ... This category has the following 2 subcategories, out of 2 total. ... Dimensionless quantity * List of dimensionless quantities; D.

  6. Proton-to-electron mass ratio - Wikipedia

    en.wikipedia.org/wiki/Proton-to-electron_mass_ratio

    In physics, the proton-to-electron mass ratio (symbol μ or β) is the rest mass of the proton (a baryon found in atoms) divided by that of the electron (a lepton found in atoms), a dimensionless quantity, namely: μ = m p /⁠m e = 1 836.152 673 426 (32). [1]

  7. Oscillator strength - Wikipedia

    en.wikipedia.org/wiki/Oscillator_strength

    In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.

  8. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.

  9. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar ...